Variations in Technology

Individual
- Gas boiler + SHW (+PV)
- ASHP + SHW (+ PV)
- GSHP (+PV)
- GSHP + SHW (+ PV)
- GSHP + biomass back boiler (+ PV)
- Biomass boiler (+ PV)

Communal
- Gas boiler + SHW (+PV) [Apartment block]
- Biomass CHP + gas boiler (+ PV)
- Gas CHP + biomass boiler (+ PV)
- Gas CHP + gas boiler (+PV), CHP fraction 0.7 or less
- Gas CHP + gas boiler (+PV), no tank in dwelling

Variations in Fabric Specification
- Regional FEES
- Thermal mass parameter

Other Variations
- Additional house types (inc modest solar design dwelling)
- CO$_2$(e) emission factor changes
- Roof orientation for PV output

Sensitivities modelled
Modelling sensitivity: Technologies
e.g. Carbon Target = 10kgCO$_2$(e)/m2/yr

Detached House, East Pennines

Carbond Target = 10kgCO$_2$(e)/m2/yr

<table>
<thead>
<tr>
<th>System</th>
<th>FEES</th>
<th>Spec C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous Electric (i)</td>
<td>38.8</td>
<td>38.8</td>
</tr>
<tr>
<td>Gas combi boiler (i)</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>Gas boiler (i)</td>
<td>13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Gas boiler + SHW (i)</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>ASHP (i)</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>ASHP + SHW (i)</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>GSHP (i)</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>GSHP + SHW (i)</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>GSHP + Biomass back boiler (i)</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Biomass (i)</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Gas boiler (c.)</td>
<td>13.6</td>
<td>13.6</td>
</tr>
<tr>
<td>GSHP (c.)</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Biomass boiler (c.)</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Gas CHP + Gas boiler (c.)</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Gas CHP + Gas boiler, no tank (c.)</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Gas CHP (max70%) + Gas boiler (c.)</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Gas CHP + Biomass boiler (c.)</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Biomass CHP + Gas boiler (c.)</td>
<td>-9.1</td>
<td>-9.1</td>
</tr>
</tbody>
</table>

NOTES
- Technical WG concluded that core technology scenarios are representative of the broad spectrum of sensitivities modelled.
- Similar picture across all dwelling types.
Modelling sensitivity: Dwelling types
Additional Dwelling Types

e.g. Carbon Target = 10kgCO\(_2\)(e)/m\(^2\)/yr

East Pennines, FEES

NOTES

- Technical WG concluded that core dwelling types are representative of the range of standard dwelling types that might be built
- The roof area available for solar technologies is similar for similar types of dwelling, and 2.5/3-storey dwellings do not appear to be disadvantaged
- The detached bungalow can be seen as a proxy for a FOG, with carbon performance similar to the core detached house
- See also Spec C results over the page

Core dwelling types marked in yellow
Additional Dwelling Types

e.g. Carbon Target = 10kgCO₂ₑ/m²/yr

East Pennines, Spec C

NOTES

- Technical WG concluded that core dwelling types are representative of the range of standard dwelling types that might be built
- The roof area available for solar technologies is similar for similar types of dwelling, and 2.5/3-storey dwellings do not appear to be disadvantaged
- The detached bungalow can be seen as a proxy for a FOG, with carbon performance similar to the core detached house
- See also FEES results on the previous page
NOTES

- Technical WG concluded that modest passive solar design could give marginal upside to carbon performance, but it was not so significant as to be necessary to take this into account when determining the Carbon Compliance level.
Modelling sensitivity:
Thermal Mass Parameter
Sensitivities:
Change in carbon emissions due to change in Thermal Mass Parameter (TMP)

NOTES
- Technical WG concluded that the variance in carbon performance when assuming different thermal mass should not be material to determining the Carbon Compliance level (i.e. the assumption of Medium TMP in the dwelling models is OK)
- It was felt that in reality TMP was more likely to influence the occurrence, frequency and intensity of overheating and therefore affect cooling demand more so than heating
Modelling sensitivity:
PV output
NOTES

- Effect of orientation on PV performance is small compared to the effect of overshading
- Panel inclination can also have a relatively large effect compared to change in orientation

Inclination

- 30°
- 45°
- 60°
- Vertical
- Horizontal
Sensitivities:
Change in carbon emissions due to change in PV Inclination, Overshading, Orientation

FOR 1kWp PV (End terrace, FEES, EP)
FROM: South, 30deg, Very little overshading

NOTES
- Technical WG concluded that the standard assumptions of PV performance in the modelled dwellings should be altered to:
 - SE/SW orientation
 - 45deg inclination
 - None/ v. little overshading
- This it to take into account the general situation that available roof areas may not be perfectly orientated, or may not be at the most advantageous pitch, or may experience a greater amount of overshading